Important Notice:

The answer paper Must be submitted before 1 May 2021 at 5:00pm.

♠ The answer paper MUST BE sent to the CU Blackboard.

 \bigstar The answer paper Must include your name and student ID.

Answer ALL Questions

1. (15 points)

Let
$$f(x) := \sum_{n=1}^{\infty} x^n (1-x)$$
. Let $D := \{x \in \mathbb{R} : f(x) \text{ is convergent}\}.$

- (a) Find D.
- (b) Does f(x) converge uniformly on D?

*** See Next Page ***

2. (15 points)

Let g be a real analytic function on \mathbb{R} .

(a) Suppose that there is $\delta > 0$ such that g(x) = 0 for all $x \in (-\delta, \delta)$. Show that $g \equiv 0$ on \mathbb{R} .

(Hint: Consider the set $\{r > 0 : g \equiv 0 \text{ on } (-r, r)\}$.)

(b) Show that if $\int_a^b |g(x)| dx = 0$ for some a < b, then $g(x) \equiv 0$ on \mathbb{R} .

3. (20 points)

For each $a \in \mathbb{R}$, put

$$a^{+} = \begin{cases} a, & \text{if } a > 0, \\ 0, & \text{otherwise,} \end{cases} \quad \text{and} \quad a^{-} = \begin{cases} -a, & \text{if } a < 0, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Suppose that the series $\sum a_n$ is conditionally convergent, that is, the series $\sum a_n$ is convergent but $\sum |a_n| = \infty$. Show that $\sum a_n^+ = \sum a_n^- = \infty$.
- (b) Consider $a_n := \frac{(-1)^{n+1}}{n}$ for n = 1, 2, ... Show that there is a bijection σ on \mathbb{Z} + such that $\liminf s_n = 0$ and $\limsup s_n = 1$, where $s_n := \sum_{k=1}^n a_{\sigma(k)}$.

*** END OF PAPER ***